

Breaking down JSON Web
Tokens
From pros and cons to building and
revoking

The FusionAuth Team

This book is for sale at http://leanpub.com/json-web-tokens

This version was published on 2022-02-25

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2022 The FusionAuth Team

http://leanpub.com/json-web-tokens
http://leanpub.com/
http://leanpub.com/manifesto

Contents

What are JWTs . 1

Building a Secure Signed JWT 7
Definitions . 8
Out of scope . 8
Security considerations 9
Creating tokens . 10
Holding tokens . 15
Consuming a JWT . 16
In conclusion . 18

Pros and Cons of JWTs . 19
JWTs expire at specific intervals 21
JWTs are signed . 22
JWTs aren’t easily revocable 23
JWTs have exploits . 23
Sessions as an alternative 23

Revoking JWTs & JWT Expiration 26
Reduce the duration of the JWT 27
Rotate keys . 28
Build a deny list . 29
Conclusion . 33

Anatomy of a JWT . 34
The header . 35

CONTENTS

The body . 37
Signature . 41
Limits . 42
Conclusion . 44

Conclusion . 45

What are JWTs
First things first. JSON Web Tokens, or JWTs, are pronounced ‘jot’,
not J-W-T. You’re welcome!

JWTs encapsulate arbitrary JSON in a standardized way, and
are useful to communicate between different parts of a software
system.

They are an IETF standard. The main RFC is 7519, but there are
others as well. RFC 7515, RFC 7516, RFC 7517, RFC 7518 and RFC
7520 all concern this technology in one way or another.

There are two kinds of JWTs: signed and encrypted.

Signed JWTs allow you to cryptographically verify the integrity
of the JWT. That means you can be assured the contents are
unchanged from when the signer created it. However, signed JWTs
do not protect the data carried from being seen; anyone who
possesses a JWT can see its content. You don’t want to put anything
in a JWT that should be a secret or that might leak information.

Encrypted JWTs, on the other hand, have a payload that cannot be
read by those who do not possess the decryption key. If you have
a payload that must be secret and both the creator and recipient of
the JWT support it, encrypted JWTs are a good solution.

In general, signed JWTs are far more common. Unless otherwise
noted, if this book uses the term JWT, it refers to a signed JWT.

JWTs are often used as stateless, portable tokens of identity. This
usage will be the focus of this book, but what does that actually
mean?

• They are stateless because the integrity of the information
can be determined without contacting any remote service or

What are JWTs 2

server. The aforementioned signature allows a consumer of a
JWT to verify the integrity without any network access.

• They are portable because, even though they contain char-
acters such as { that are typically not acceptable in certain
contexts, JWTs use base64 URL encoding. This encoding
ensures that the contents are safe for HTTP headers, cookies,
and form parameters.

• Because of the flexibility of the JSON format, JWTs can encap-
sulate identity information, such as roles and user identifiers.

The combination of these attributes mean that JWTs are great for
transporting identity information to different services. One service
may authenticate the user and create a JWT for the client, and
then other services, which offer different functionality and data
depending on who the user is, can consume that JWT. This works
especially well for APIs and microservices, which have minimal
information about the user in their datastore. This is why many
auth servers, also known as identity providers, issue JWTs.

You can sign a JWT with either a symmetric or asymmetric algo-
rithm. Using a symmetric algorithm will be faster, but has signif-
icant security and operational ramifications. This is not unique to
JWTs, because a symmetric algorithm like HS256 requires a shared
secret. Therefore, when using a symmetric algorithm, any con-
sumer of a JWT can also create JWTs indistinguishable from those
created by an identity provider. Therefore, asymmetric solutions
are recommended, even though they are slower. If performance is
critical, make sure you benchmark your system to understand how
signing algorithm choice affects both creation and consumption of
JWTs.

Not all bearer tokens are JWTs and not all JWTs are bearer tokens,
but the use case is common enough that it is worth mentioning. A
bearer token is like a car key. If I have a car key, that gives me access
to the car. The key doesn’t care if I’m the owner, a friend or a thief.

What are JWTs 3

In the same way, bearer tokens offer access to protected resources
no matter who is presenting them. That means that you need to
protect JWTs used in this way by using TLS for transport and by
storing them safely in a location not accessible to other applications
or rogue code.

If your use case is such that the risks of bearer tokens are unaccept-
able, there are a few options that cryptographically bind a token to
a client. JWTs used in this way are not bearer tokens. While I won’t
be covering these solutions, both MTLS¹ and DPoP² may meet your
needs.

As mentioned above, JWTs are produced by many identity
providers. They are also widely supported elsewhere, having many
articles, open source libraries and implementations available. I
have yet to run into a major language that didn’t have at least one
library for creating and parsing JWTs. And, because JWTs depend
on cryptographic operations and are often used as temporary
credentials, using a well known, well vetted open source library to
interact with JWTs is a good idea.

In the rest of this book, we’ll cover different aspects of JSON Web
Tokens and systems that use them.
What are JWTs

First things first. JSON Web Tokens, or JWTs, are pronounced ‘jot’,
not J-W-T. You’re welcome!

JWTs encapsulate arbitrary JSON in a standardized way, and
are useful to communicate between different parts of a software
system.

They are an IETF standard. The main RFC is 7519, but there are
others as well. RFC 7515, RFC 7516, RFC 7517, RFC 7518 and RFC
7520 all concern this technology in one way or another.

There are two kinds of JWTs: signed and encrypted.

¹https://datatracker.ietf.org/doc/html/rfc8705
²https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04

https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04

What are JWTs 4

Signed JWTs allow you to cryptographically verify the integrity
of the JWT. That means you can be assured the contents are
unchanged from when the signer created it. However, signed JWTs
do not protect the data carried from being seen; anyone who
possesses a JWT can see its content. You don’t want to put anything
in a JWT that should be a secret or that might leak information.

Encrypted JWTs, on the other hand, have a payload that cannot be
read by those who do not possess the decryption key. If you have
a payload that must be secret and both the creator and recipient of
the JWT support it, encrypted JWTs are a good solution.

In general, signed JWTs are far more common. Unless otherwise
noted, if this book uses the term JWT, it refers to a signed JWT.

JWTs are often used as stateless, portable tokens of identity. This
usage will be the focus of this book, but what does that actually
mean?

• They are stateless because the integrity of the information
can be determined without contacting any remote service or
server. The aforementioned signature allows a consumer of a
JWT to verify the integrity without any network access.

• They are portable because, even though they contain char-
acters such as { that are typically not acceptable in certain
contexts, JWTs use base64 URL encoding. This encoding
ensures that the contents are safe for HTTP headers, cookies,
and form parameters.

• Because of the flexibility of the JSON format, JWTs can encap-
sulate identity information, such as roles and user identifiers.

The combination of these attributes mean that JWTs are great for
transporting identity information to different services. One service
may authenticate the user and create a JWT for the client, and
then other services, which offer different functionality and data
depending on who the user is, can consume that JWT. This works

What are JWTs 5

especially well for APIs and microservices, which have minimal
information about the user in their datastore. This is why many
auth servers, also known as identity providers, issue JWTs.

You can sign a JWT with either a symmetric or asymmetric algo-
rithm. Using a symmetric algorithm will be faster, but has signif-
icant security and operational ramifications. This is not unique to
JWTs, because a symmetric algorithm like HS256 requires a shared
secret. Therefore, when using a symmetric algorithm, any con-
sumer of a JWT can also create JWTs indistinguishable from those
created by an identity provider. Therefore, asymmetric solutions
are recommended, even though they are slower. If performance is
critical, make sure you benchmark your system to understand how
signing algorithm choice affects both creation and consumption of
JWTs.

Not all bearer tokens are JWTs and not all JWTs are bearer tokens,
but the use case is common enough that it is worth mentioning. A
bearer token is like a car key. If I have a car key, that gives me access
to the car. The key doesn’t care if I’m the owner, a friend or a thief.

In the same way, bearer tokens offer access to protected resources
no matter who is presenting them. That means that you need to
protect JWTs used in this way by using TLS for transport and by
storing them safely in a location not accessible to other applications
or rogue code.

If your use case is such that the risks of bearer tokens are unaccept-
able, there are a few options that cryptographically bind a token to
a client. JWTs used in this way are not bearer tokens. While I won’t
be covering these solutions, both MTLS³ and DPoP⁴ may meet your
needs.

As mentioned above, JWTs are produced by many identity
providers. They are also widely supported elsewhere, having many
articles, open source libraries and implementations available. I

³https://datatracker.ietf.org/doc/html/rfc8705
⁴https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04

https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04

What are JWTs 6

have yet to run into a major language that didn’t have at least one
library for creating and parsing JWTs. And, because JWTs depend
on cryptographic operations and are often used as temporary
credentials, using a well known, well vetted open source library to
interact with JWTs is a good idea.

In the rest of this book, we’ll cover different aspects of JSON Web
Tokens and systems that use them.

Building a Secure Signed
JWT

JSONWeb Tokens (JWTs) get a lot of hate online for being insecure.
Tom Ptacek, founder of Latacora⁵, a security consultancy, had this
to say about JWTs in 2017⁶:

So, as someone who does some work in crypto engi-
neering, arguments about JWT being problematic only
if implementations are “bungled” or developers are “in-
competent” are sort of an obvious “tell” that the people
behind those arguments aren’t really crypto people. In
crypto, this debate is over.

I know a lot of crypto people who do not like JWT. I
don’t know one who does.

Despite some negative sentiment, JWTs are a powerful and secure
method of managing identity and authorization – they simply
need to be used properly. They have other benefits too, they’re
flexible, standardized⁷, stateless, portable, easy to understand, and
extendable. They also have libraries to help you generate and
consume them in almost every programming language.

This chapter will help make sure your JWTs are unassailable. It’ll
cover how you can securely integrate tokens into your systems by
illustrating the most secure options.

However, every situation is different. You know your data and
risk factors, so please learn these best practices and then apply

⁵https://latacora.com/
⁶https://news.ycombinator.com/item?id=14292223
⁷https://tools.ietf.org/html/rfc7519

https://latacora.com/
https://news.ycombinator.com/item?id=14292223
https://tools.ietf.org/html/rfc7519
https://latacora.com/
https://news.ycombinator.com/item?id=14292223
https://tools.ietf.org/html/rfc7519

Building a Secure Signed JWT 8

them using judgement. A bank shouldn’t follow the same security
practices as a ‘todo’ SaaS application; take your needs into account
when implementing these recommendations.

One additional note regarding the security of JWTs is that they are
similar in many respects to other signed data, such as SAML asser-
tions. While JWTs are often stored in a wider range of locations
than SAML tokens are, always carefully protect any signed tokens.

Definitions

• creator: the system which creates the JWTs. In the world of
OAuth this is often called an Authorization Server or AS.

• consumer: a system which consumes a JWT. In the world of
OAuth this is often called the Resource Server or RS. These
consume a JWT to determine if they should allow access to a
Protected Resource such as an API.

• client: a system which retrieves a token from the creator,
holds it, and presents it to other systems like a consumer.

• claim: a piece of information asserted about the subject of the
JWT. Some are standardized, others are application specific.

Out of scope

This article will only be discussing signed JWTs. Signing of JSON
data structures is standardized⁸.

There are also standards for encrypting JSON data⁹ but signed
tokens are more common, so we’ll focus on them. Therefore, in this
article the term JWT refers to signed tokens, not encrypted ones.

⁸https://tools.ietf.org/html/rfc7515
⁹https://tools.ietf.org/html/rfc7516

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516

Building a Secure Signed JWT 9

Security considerations

When you are working with JWTs in any capacity, be aware of
the footguns that are available to you (to, you know, let you shoot
yourself in the foot).

The first is that a signed JWT is like a postcard. Anyone who has
access to it can read it. Though this JWT string may look illegible,
it’s trivial to decode:

1 eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJmdXNpb25h\

2 dXRoLmlvIiwiZXhwIjoxNTkwNzA4Mzg1LCJhdWQiOiIyMzhkNDc5My03M\

3 GRlLTQxODMtOTcwNy00OGVkOGVjZDE5ZDkiLCJzdWIiOiIxOTAxNmI3My\

4 0zZmZhLTRiMjYtODBkOC1hYTkyODc3Mzg2NzciLCJuYW1lIjoiRGFuIE1\

5 vb3JlIiwicm9sZXMiOlsiUkVUUklFVkVfVE9ET1MiXX0.8QfosnY2Zled\

6 xWajJJqFPdEvrtQtP_Y3g5Kqk8bvHjo

You can decode it using any number of online tools¹⁰, because it’s
just three base64 encoded strings joined by periods.

Keep any data that you wouldn’t want in the hands of someone else
outside of your JWT.When you sign and send a token, or when you
decode and receive it, you’re guaranteed the contents didn’t change.
But you’re not guaranteed the contents are unseen.

A corollary of that is that any information you do send should
avoid unintentional data leakage. This includes identifiers. If a JWT
includes a value like 123 for an id, that means anyone viewing it has
a pretty good idea that there is an entity with the id of 122. Use a
GUID or random string for identifiers to avoid this issue. Likewise,
because tokens are not encrypted, use TLS for transmitting them.

Don’t send JWTs using an HTTP method that may be cached or
logged. So don’t append the token to a GET request as a parameter.
If you must send it in a GET request, use an HTTP header. You can

¹⁰https://fusionauth.io/learn/expert-advice/dev-tools/jwt-debugger

https://fusionauth.io/learn/expert-advice/dev-tools/jwt-debugger
https://fusionauth.io/learn/expert-advice/dev-tools/jwt-debugger

Building a Secure Signed JWT 10

also use other HTTP methods such as POST, which sends the JWT
as a part of a request body. Sending the token value as part of a GET
URL might result in the JWT being stored in a proxy’s memory or
filesystem, a browser cache, or even in web server access logs.

If you are using OAuth, be careful with the Implicit grant, because
if not implemented correctly, it can send the JWT (the access token)
as a request parameter or fragment. While ignored by proxies, that
can be cached by browsers and accessed by any JavaScript running
on a page. For example, the Docusign esign REST API¹¹ delivers the
access token as a URL fragment. Oops.

Creating tokens

When you are creating a JWT, use a library. Don’t implement this
RFC yourself. There are lots of great libraries out there¹². Use one.

Set the typ claim of your JWT header to a known value. This
prevents one kind of token from being confused with one of a
different type.

Signature algorithms

When using JWTs, choose the correct signing algorithm. You have
two families of options, a symmetric algorithm like HMAC or an
asymmetric choice like RSA or elliptic curves (ECC). The "none"

algorithm, which doesn’t sign the JWT and allows anyone to
generate a token with any payload they want, should not be used
and any JWTs that use this signing algorithm (which actually
means they aren’t signed) should be rejected immediately.

¹¹https://developers.docusign.com/esign-rest-api/guides/authentication/oauth2-
implicit#step-1-obtain-the-access-token

¹²https://openid.net/developers/jwt/

https://developers.docusign.com/esign-rest-api/guides/authentication/oauth2-implicit#step-1-obtain-the-access-token
https://openid.net/developers/jwt/
https://developers.docusign.com/esign-rest-api/guides/authentication/oauth2-implicit#step-1-obtain-the-access-token
https://developers.docusign.com/esign-rest-api/guides/authentication/oauth2-implicit#step-1-obtain-the-access-token
https://openid.net/developers/jwt/

Building a Secure Signed JWT 11

There are three factors in algorithm selection. Performance, secu-
rity and operational concerns all will play a role in your decision.

Performance

The first thing to consider is performance. A symmetric signing
algorithm like HMAC is faster. Here are the benchmark results
using the ruby-jwt library, which signed and verified a token 50,000
times:

1 hmac sign

2 4.620000 0.008000 4.628000 (4.653274)

3 hmac verify

4 6.100000 0.032000 6.132000 (6.152018)

5 rsa sign

6 42.052000 0.048000 42.100000 (42.216739)

7 rsa verify

8 6.644000 0.012000 6.656000 (6.665588)

9 ecc sign

10 11.444000 0.004000 11.448000 (11.464170)

11 ecc verify

12 12.728000 0.008000 12.736000 (12.751313)

Don’t look at the absolute numbers, they’re going to change based
on the programming language, what’s happening on the system
during a benchmark run, and CPU horsepower. Instead, focus on
the ratios.

RSA encoding took approximately 9 times as long as HMAC encod-
ing. Using ECC took almost two and a half times as long to encode
and twice as long to decode. The code is publicly available¹³ if you’d
like to take a look. The takeaway is that symmetric signatures are
faster than asymmetric options.

¹³https://github.com/FusionAuth/fusionauth-example-ruby-jwt/blob/master/benchmark_
algos.rb

https://github.com/FusionAuth/fusionauth-example-ruby-jwt/blob/master/benchmark_algos.rb
https://github.com/FusionAuth/fusionauth-example-ruby-jwt/blob/master/benchmark_algos.rb
https://github.com/FusionAuth/fusionauth-example-ruby-jwt/blob/master/benchmark_algos.rb

Building a Secure Signed JWT 12

If you have a choice between RSA and elliptic curve cryptography
for a public/private key signing algorithm, choose elliptic curve
cryptography, as it’s easier to configure correctly, more modern,
has fewer attacks, and is faster. You might have to use RSA if other
parties don’t support ECC, however.

Operational concerns

Another factor in choosing the correct signing algorithm is secret
distribution, which is an operational as well as a security concern.
HMAC requires a shared secret to decode and encode the token.
This means you need some method to provide the secret to both
the creator and consumer of the JWT.

If you control both parties and they live in a common environment,
this is not typically a problem; you can add the secret to whatever
secrets management solution you use and have both entities pull
the secret from there.

However, if you want outside entities to be able to verify your
tokens, choose an asymmetric option. This might happen if the
consumer is operated by a different department or business. The
token creator can use the JWK¹⁴ specification to publish public keys,
and then the consumer of the JWT can validate it using that key.

Security ramifications

The shared secret required for options like HMAC has security im-
plications. The token consumer can create a JWT indistinguishable
from a token built by the creator, because both have access to the
algorithm and the shared secret. This means you’ll need to secure
both the creator and the consumer of your tokens equally.

By using public/private key cryptography to sign the tokens, the
issue of a shared secret is bypassed. Because of this, using an
asymmetric option allows a creator to provide JWTs to token

¹⁴https://tools.ietf.org/html/rfc7517

https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517

Building a Secure Signed JWT 13

consumers that are not trusted. No system lacking the private key
can generate a valid token.

Claims

Make sure you set your claims appropriately. The JWT specification
is clear:

The set of claims that a JWT must contain to be consid-
ered valid is context dependent and is outside the scope
of this specification.

Therefore no claims are required by the RFC. But to maximize
security, the following registered claims should be part of your
token creation:

• iss identifies the issuer of the JWT. It doesn’t matter exactly
what this string is as long as it is unique, doesn’t leak
information about the internals of the issuer, and is known
by the consumer.

• aud identifies the audience of the token. This can be a scalar
or an array value, but in either case it should also be known
by the consumer.

• nbf and exp claims determine the timeframe that the token is
valid. The nbf claim can be useful if you are issuing a token
for future use, as it declares the time before which the token is
not valid (“not before”). The exp claim, a time beyond which
the JWT is no longer valid, should always be set. These are
both in seconds since the unix epoch.

Revocation

Because it is difficult to invalidate JWTs once issued–one of their
benefits is that they are stateless, which means holders don’t need

Building a Secure Signed JWT 14

to reach out to any server to verify they are valid–you should keep
their lifetime on the order of second, minutes or hours, rather than
days or months.

Short lifetimes mean that should a JWT be stolen, the token will
soon expire and no longer be accepted by the consumer.

But there are times, such as a data breach or a user logging out of
your application, when you’ll want to revoke tokens, either across
a system or on a more granular level.

You have a few choices here. These are in order of how much effort
implementation would require from the token consumer:

• Let tokens expire. No effort required here.
• Have the creator rotate the secret or private key. This invali-
dates all extant tokens signed with that key.

• Use a ‘time window’ solution in combination with webhooks.
Revoking JWTs in general is covered in more depth here.

Keys

It’s important to use a long, random secret when you are using a
symmetric algorithm. Don’t choose a key that is in use in any other
system.

Longer keys or secrets are more secure, but take longer to generate
signatures. To find the appropriate tradeoff, make sure you bench-
mark the performance. The JWK RFC¹⁵ does specify minimum
lengths for various algorithms.

The minimum secret length for HMAC:

A key of the same size as the hash output (for instance,
256 bits for “HS256”) or larger MUST be used with this
algorithm.

¹⁵https://tools.ietf.org/html/rfc7518

https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518

Building a Secure Signed JWT 15

The minimum key length for RSA:

A key of size 2048 bits or larger MUST be used with
these algorithms.

Theminimum key length for ECC is not specified in the RFC. Please
consult the RFC for more specifics about other algorithms.

You should rotate your token signing keys regularly. Ideally you’d
set this up in an automated fashion.

Rotation renders all tokens signed with the old key invalid (unless
the consumer caches the keys), so plan accordingly. It’s best to allow
for a grace period equal to the lifetime of a JWT.

Holding tokens

Clients request and hold tokens, which then then present to con-
sumers to gain access to protected data or resources.

A client can be a browser, a mobile phone or anything else. A client
receives a token from a token creator (sometimes through a proxy
or a backend service that is usually part of your application).

Clients are then responsible for two things:

• Passing the token on to any token consumers for authen-
tication and authorization purposes, such as when a web
application makes an HTTP request to a backend or API.

• Storing the token securely.

Clients should deliver the JWT to consumers over a secure connec-
tion, typically TLS version 1.2 or later.

The client must store the token securely as well. How to do that
depends on what the client actually is.

Building a Secure Signed JWT 16

For a browser, you should avoid storing the JWT in localstorage or
a cookie accessible to JavaScript. You should instead keep it in a
cookie with the following flags:

• Secure to ensure the cookie is only sent over TLS.
• HttpOnly so that no rogue JavaScript can access the cookie.
• SameSite with a value of Lax or Strict. Either of these
will ensure that the cookie is only sent to the domain it is
associated with.

An alternative to a cookie with these flags would be using a web
worker¹⁶ to store the token outside of the main JavaScript context.
You could also store the token in memory, which works great as
long as the page isn’t reloaded.

For a mobile device, store the token in a secure location. For exam-
ple, on an Android device, you’d want to store a JWT in internal
storage with a restrictive access mode¹⁷ or in shared preferences¹⁸.
For an iOS device, storing the JWT in the keychain¹⁹ is the best
option.

For other types of clients, use platform specific best practices for
securing data at rest.

Consuming a JWT

Tokens must be examined as carefully as they are crafted. When
you are consuming a JWT, verify the JWT to ensure it was signed
correctly, and validate and sanitize the claims.

Just as with token creation, don’t roll your own implementation;
use existing libraries.

¹⁶https://gitlab.com/jimdigriz/oauth2-worker
¹⁷https://developer.android.com/training/articles/security-tips#StoringData
¹⁸https://developer.android.com/reference/android/content/SharedPreferences
¹⁹https://developer.apple.com/documentation/security/keychain_services

https://gitlab.com/jimdigriz/oauth2-worker
https://gitlab.com/jimdigriz/oauth2-worker
https://developer.android.com/training/articles/security-tips#StoringData
https://developer.android.com/training/articles/security-tips#StoringData
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.apple.com/documentation/security/keychain_services
https://gitlab.com/jimdigriz/oauth2-worker
https://developer.android.com/training/articles/security-tips#StoringData
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.apple.com/documentation/security/keychain_services

Building a Secure Signed JWT 17

First, verify that the JWT signature matches the content. Any
library should be able to do this, but ensure that the algorithm that
the token was signed with, based on the header, is the same used
to decode it.

In addition, verify the kid value in the header; make sure the key id
matches the key you are using the validate the signature. It’s worth
mentioning again here that any JWTs using the none algorithm
should be rejected immediately.

Once the signature checks out, validate the claims are as expected.
This includes any implementation specific registered claims set on
creation, as well as the issuer (iss) and the audience (aud) claims. A
consumer should know the issuer it expects, based on out of band
information such as documentation or deploy time configuration.
Checking the aud claim ensures the JWT is meant for you.

Other claimsmatter too.Make sure the typ claim, in the header, is as
expected. Check that the current time is within the JWT’s lifetime;
that is that ‘now’ is before the exp value and after the nbf value, if
present. If you’re concerned about clock skew, allow some leeway.

If any of these claims fail to match expected values, the consumer
should provide only a minimal error message to the client. Just as
authentication servers should not reveal whether a failed login was
due to an non-existent username or invalid password, you should
return the same error message and status code, 403 for example, for
any invalid token. This minimizes the information an attacker can
learn by generating JWTs and sending them to a consumer.

If you are going to use claims for further information processing,
make sure you sanitize those values. For instance, if you are going
to query a database based on a claim, use a parameterized query.

Building a Secure Signed JWT 18

In conclusion

JWTs are a flexible technology, and can be used in many ways.
We discussed a number of steps you can take, as either a creator,
client or consumer of tokens, to ensure your JWTs are as secure as
possible.

Pros and Cons of JWTs
This chapter provides an analysis of JWTs (JSON Web Tokens,
pronounced “jot”) from how they are used to pros and cons of using
JWTs in your application.

JWTs are becoming more and more ubiquitous. Customer identity
and access management (CIAM) providers everywhere are pushing
JWTs as the silver bullet for everything.

JWTs are pretty cool, but let’s talk about some of the downsides of
JWTs and other solutions you might consider.

One way to describe JWTs is that they are portable units of identity.
That means they contain identity information as JSON and can
be passed around to services and applications. Any service or
application can verify a JWT itself.

The service/application receiving a JWT doesn’t need to ask the
identity provider that generated the JWT if it is valid. Once a JWT
is verified, the service or application can use the data inside it to
take action on behalf of the user.

Here’s a diagram that illustrates how the identity provider creates
a JWT and how a service can use the JWT without calling back to
the identity provider: (yes that is a Palm Pilot in the diagram)

Pros and Cons of JWTs 20

JWT Example

When you contrast this with an opaque token, you’ll see why
so many developers are using JWTs. Opaque tokens are just a
large string of characters that don’t contain any data. A token
must be verified by asking the identity provider if it is still valid
and returning the user data the service needs. This is known as
introspection.

Here’s a diagram that illustrates how the identity provider is called
to verify the opaque token and fetch the user data:

Opaque Token Example

This method of verifying and exchanging tokens can be very
“chatty” and it also requires a method of persisting and loading

Pros and Cons of JWTs 21

the tokens inside the identity provider. JWTs on the other hand
don’t require any persistence or logic in the identity provider since
they are portable and standalone. Once a JWT has been issued, the
identity provider’s job is done.

There are a couple of things you should consider when deciding to
use JWTs. Let’s look at a few of the main ones.

JWTs expire at specific intervals

When a JWT is created it is given a specific expiration instant.
The life of a JWT is definitive and it is recommended that it is
somewhat small (think minutes not hours). If you have experience
with traditional sessions, JWTs are quite different.

Traditional sessions are always a specific duration from the last
interaction with the user. This means that if the user clicks a button,
their session is extended. If you think about most applications you
use, this is pretty common. You are logged out of the application
after a specific amount of inactivity.

JWTs on the other hand, are not extended by any user interaction.
Instead they either expire or are programmatically replaced by
creating a new JWT for the user.

To solve this problem, most applications use refresh tokens. Refresh
tokens are opaque tokens that are used to generate new JWTs.
Refresh tokens also need to expire at some point, but they can be
more flexible in this mechanism because they are persisted in the
identity provider. This property makes them similar to the opaque
tokens described above.

Pros and Cons of JWTs 22

JWTs are signed

Since JWTs are cryptographically signed, they require a crypto-
graphic algorithm to verify. Cryptographic algorithms are purpose-
fully designed to be slow. The slower the algorithm, the higher the
complexity, and the less likely that the algorithm can be cracked
using brute-force methods.

As of 2019, on a quad-core MacBook Pro, about 200 JWTs can
be created and signed per second using RSA public-private key
signing. This number drops dramatically on virtualized hardware
like Amazon EC2s. HMAC signing is much faster but lacks the same
flexibility and security characteristics. Specifically, if the identity
provider uses HMAC to sign a JWT, then all services that want to
verify the JWT must have the HMAC secret. This means that all
the services can now create and sign JWTs as well. This makes the
JWTs less portable (specifically to public services) and less secure.

To give you an idea of the performance characteristics of JWTs and
the cryptographic algorithms used, we ran some tests on a quad-
core MacBook. These are from 2019, so the absolute numbers will
change over time, but the general trends will not. Here are some of
the metrics and timings we recorded for JWTs:

Metric | | Timing
— | | —
JSON Serialization + Base64 Encoding | | 400,000/s
JSON Serialization + Base64 Encoding + HMAC Signing | | 150,000/s
JSON Serialization + Base64 Encoding + RSA Signing | | 200/s
Base64 Decoding + JSON Parsing | | 400,000/s
Base64 Decoding + JSON Parsing + HMAC Verification | | 130,000/s
Base64 Decoding + JSON Parsing + RSA Verification | | 6,000/s

Pros and Cons of JWTs 23

JWTs aren’t easily revocable

This means that a JWT could be valid even though the user’s
account has been suspended or deleted. There are a couple of ways
around this, discussed further in this chapter.

JWTs have exploits

This is more a matter of bad coding than flaws that are inherent to
JWTs. The “none” algorithm and the “HMAC” hack are both well
know exploits of JWTs. I won’t go into details about these exploits
here, but there are many discussions of them online.

Both of these exploits have simple fixes. Specifically, you should
never allow JWTs that were created using the “none” algorithm.

Also, you should not blindly load signing keys using the “kid”
header in the JWT. Instead, you should validate that the key is
indeed the correct key for the algorithm specified in the header.

Sessions as an alternative

Instead of using JWTs or opaque tokens, you always have the option
of using sessions. Sessions have been around for over two decades
and are proven technology. Sessions generally work through the
use of cookies and state that is stored on the server. The cookie
contains a string of characters that is the session id. The server
contains a large hash that keys off the session id and stores arbitrary
data safely server-side.

When a user logs in, the user object is stored in the session and
the server sends back a session cookie that contains the session id.
Each subsequent request to the server includes the session cookie.

Pros and Cons of JWTs 24

The server uses the session cookie to load the user object out of
the session Hash. The user object is then used to identify the user
making the request.

Here are two diagrams that illustrate this concept:

Login

Login example with sessions.

Pros and Cons of JWTs 25

Second request

API call example with sessions.

If you have a smaller application that uses a single backend, sessions
work well. Once you start scaling or using microservices, sessions
can be more challenging.

Larger architectures require load-balancing and session pinning,
where each client is pinned to the specific server where their session
is stored. Session replication or a distributed cache might be needed
to ensure fault tolerance or allow for zero-downtime upgrades.
Even with this added complexity, sessions might still be a good
option.

I hope this overview of JWTs and Sessions has been helpful in
shedding some light on these technologies that are used to identity
and manage users.

Either of these solutions will work in nearly any application. The
choice generally comes down to your needs and the languages and
frameworks you are using.

Revoking JWTs & JWT
Expiration

Whenever I talk with developers about JSON Web Tokens (JWTs),
one question keeps coming up: “How do I revoke a JWT?”

If you poke around online, you’ll find that the most common
answers are:

• Set the duration of the JWT to a short period (a few minutes
or seconds)

• Implement complicated denylisting techniques
• Store every JWT so you can validate them

There is not a simple solution because JWTs are designed to be
portable, decoupled representation of identities. Once you authen-
ticate against an identity provider (IdP) and get back a JWT, you
don’t need to ever ask the IdP if the JWT is valid.

This is particularly powerful when you use ECC or RSA public/pri-
vate key signing. The IdP signs the JWT using the private key and
then any service that has the public key can verify the integrity of
the JWT.

Here’s a diagram that illustrates this architecture:

Revoking JWTs & JWT Expiration 27

Revoking JWTs

The Todo Backend in the diagram can use the JWT and the public
key to verify the JWT and then pull the user’s id (in this case the
subject) out of the JWT. The Todo Backend can then use the user’s
id to perform operations on that user’s data.

However, because the Todo Backend isn’t verifying the JWT with
the IdP, it has no idea if an administrator has logged into the IdP
and locked or deleted that user’s account.

What are some solutions to this issue?

Reduce the duration of the JWT

The most common solution is to reduce the duration of the JWT
and revoke the refresh token so that the user can’t generate a new
JWT.

With this approach, the JWT’s expiration duration is set to some-
thing short (5-10 minutes) and the refresh token is set to something
long (2 weeks or 2 months). At any time, an administrator can
revoke the refresh token at the IdP, which means that the next time

Revoking JWTs & JWT Expiration 28

the refresh token is presented, the user must re-authenticate to get
a new JWT.

The refresh token, however, won’t need to be presented until the
user’s JWT is invalid.

Here’s where things get tricky. That user basically has that 5 to 10
minutes to use the JWT before it expires.

Once it expires, they’ll use their current refresh token to try and get
a new JWT. Since the refresh token has been revoked, this operation
will fail and they’ll be forced to login again.

It’s this 5 to 10 minute window that freaks everyone out.

So, how do we fix it?

Rotate keys

If the Todo Backend pulls in the keys from the IdP every time it
validates the signature of the JWT, then if the key is removed, the
JWT will not validate.

Assume a JWT has a key identifier (kid) of abcd. During normal
operation, the Todo Backend requests the list of public keys, and
that includes one with the kid of abcd. That key can then be used
to validate the signature of the JWT.

If the IdP removes the key abcd from the list, the JWTwill no longer
have a valid signature.

This approach has two downsides:

• The Todo Backend must continually poll the IdP for a list of
valid keys. This obviates some of the distributed benefits of
JWTs.

• All JWTs signed by the removed key are rendered invalid.
This will affect many users.

Revoking JWTs & JWT Expiration 29

Build a deny list

Another way leverages a distributed event system that notifies
services when refresh tokens have been revoked. The IdP broadcasts
an event when a refresh token is revoked and other backend-
s/services listen for the event. When an event is received the
backends/services update a local cache that maintains a set of users
whose refresh tokens have been revoked.

This cache is checked whenever a JWT is verified to determine if
the JWT should be revoked or not. This is all based on the duration
of JWTs and expiration instant of individual JWTs.

Example: Revoking JWTs in FusionAuth

To illustrate this, I’m going to use FusionAuth²⁰’s event and web-
hook system as well as the jwt.refresh-token.revoke event. If you
are building your own IdP or using another system, youmight need
to build out your own eventing system based on this article.

The FusionAuth jwt.refresh-token.revoke event looks like this:

1 {

2 "event": {

3 "type": "jwt.refresh-token.revoke",

4 "applicationTimeToLiveInSeconds": {

5 "cc0567da-68a1-45f3-b15b-5a6228bb7146": 600

6 },

7 "userId": "00000000-0000-0000-0000-000000000001"

8 }

9 }

Next, let’s write a simple webhook in our application that will
receive this event and update the JWTManager. (NOTE: our exam-

²⁰https://fusionauth.io/

https://fusionauth.io/
https://fusionauth.io/

Revoking JWTs & JWT Expiration 30

ple has a variable called applicationId that is a global variable
that stores the id of the application itself - in this case it would
be cc0567da-68a1-45f3-b15b-5a6228bb7146). Our code below is
written in Node.js and uses the FusionAuth Node client library²¹.

1 /* Handle FusionAuth event. */

2 router.post('/fusionauth-webhook', function(req, res, nex\

3 t) {

4 JWTManager.revoke(req.body.event.userId, req.body.event\

5 .applicationTimeToLiveInSeconds[applicationId]);

6 res.sendStatus(200);

7 });

Here is how the JWTManager maintains the list of user ids whose
JWTs should be revoked.

This implementatin doesn’t depend on unique ids in the JWT, but
rather on the expiration time of the JWT and the time to live value
configured for the application which created the JWT. You could
also use the unique id of the JWT, often found in the jti claim, to
implement this without the datetime math.

Our implementation also starts a thread to clean up after itself so
we don’t run out of memory.

1 const JWTManager = {

2 revokedJWTs: {},

3

4 /**

5 * Checks if a JWT is valid. This assumes that the JWT \

6 contains a property named <code>exp</code> that is a

7 * NumericDate value defined in the JWT specification a\

8 nd a property named <code>sub</code> that is the user id \

9 the

10 * JWT belongs to.

²¹https://github.com/FusionAuth/fusionauth-node-client

https://github.com/FusionAuth/fusionauth-node-client
https://github.com/FusionAuth/fusionauth-node-client

Revoking JWTs & JWT Expiration 31

11 *

12 * @param {object} jwt The JWT object.

13 * @returns {boolean} True if the JWT is valid, false i\

14 f it isn't.

15 */

16 isValid: function(jwt) {

17 const expiration = JWTManager.revokedJWTs[jwt.sub];

18 return expiration === undefined || expiration === nul\

19 l || expiration < jwt.exp * 1000;

20 },

21

22 /**

23 * Revokes all JWTs for the user with the given id usin\

24 g the duration (in seconds).

25 *

26 * @param {string} userId The user id (usually a UUID a\

27 s a string).

28 * @param {Number} durationSeconds The duration of all \

29 JWTs in seconds.

30 */

31 revoke: function(userId, durationSeconds) {

32 JWTManager.revokedJWTs[userId] = Date.now() + (durati\

33 onSeconds * 1000);

34 },

35

36 /**

37 * Cleans up the cache to remove old user's that have e\

38 xpired.

39 * @private

40 */

41 _cleanUp: function() {

42 const now = Date.now();

43 Object.keys(JWTManager.revokedJWTs).forEach((item, in\

44 dex, _array) => {

45 const expiration = JWTManager.revokedJWTs[item];

Revoking JWTs & JWT Expiration 32

46 if (expiration < now) {

47 delete JWTManager.revokedJWTs[item];

48 }

49 });

50 }

51 };

52

53 /**

54 * Set an interval to clean-up the cache.

55 */

56 setInterval(JWTManager._cleanUp, 7000);

Our backend must ensure that it checks JWTs with the JWTMan-
ager on each API call. This becomes another part of the claims
validation process.

1 router.get('/todo', function(req, res, next) {

2 const jwt = _parseJWT(req);

3 if (!JWTManager.isValid(jwt)) {

4 res.sendStatus(401);

5 return;

6 }

7

8 // ...

9 });

You’ll need to configure the webhook to push the refresh token
revocation events to every API. In our case, it’s just the Todo API
for now.

We can now revoke a user’s refresh token and FusionAuth will
broadcast the event to our webhook. The webhook then updates the
JWTManager which will cause JWTs for that user to be revoked.

This solution works well even in large systems with numerous
backends. It requires the use of refresh tokens, an API that allows

Revoking JWTs & JWT Expiration 33

refresh tokens to be revoked, and webhooks to broadcast that
revocation. The only caveat is to be sure that your JWTManager
code cleans up after itself to avoid running out memory.

Conclusion

To answer the question that started this chapter, you can “sorta”
revoke JWTs.

Because they are self-contained, you need to build additional
functionality to ensure that the 5 to 10 minute window can be
effectively shut. This is one of the tradeoffs of using JWTs for
authorization purposes.

Anatomy of a JWT
In this chapter, you’ll learn more about what goes into a JSON
Web Token and how they are constructed. Here’s an example JWT,
freshly minted:

1 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImY1ODg5MGQxO\

2 SJ9.eyJhdWQiOiI4NWEwMzg2Ny1kY2NmLTQ4ODItYWRkZS0xYTc5YWVlY\

3 zUwZGYiLCJleHAiOjE2NDQ4ODQxODUsImlhdCI6MTY0NDg4MDU4NSwiaX\

4 NzIjoiYWNtZS5jb20iLCJzdWIiOiIwMDAwMDAwMC0wMDAwLTAwMDAtMDA\

5 wMC0wMDAwMDAwMDAwMDEiLCJqdGkiOiIzZGQ2NDM0ZC03OWE5LTRkMTUt\

6 OThiNS03YjUxZGJiMmNkMzEiLCJhdXRoZW50aWNhdGlvblR5cGUiOiJQQ\

7 VNTV09SRCIsImVtYWlsIjoiYWRtaW5AZnVzaW9uYXV0aC5pbyIsImVtYW\

8 lsX3ZlcmlmaWVkIjp0cnVlLCJhcHBsaWNhdGlvbklkIjoiODVhMDM4Njc\

9 tZGNjZi00ODgyLWFkZGUtMWE3OWFlZWM1MGRmIiwicm9sZXMiOlsiY2Vv\

10 Il19.dee-Ke6RzR0G9avaLNRZf1GUCDfe8Zbk9L2c7yaqKME

This may look like a lot of gibberish, but as you learn more about
JWTs, it begins to make more sense.

There are a few types of JWTs, but I’ll focus on signed JWTs as they
are the most common. A signed JWT may also be called a JWS. It
has three parts, separated by periods.

There’s a header, which in the case of the JWT above, starts with
eyJhbGc. Then there is a body or payload, which above starts with
eyJhdWQ. Finally, there is a signature, which starts with dee-K in the
example JWT.

Let’s break this example JWT apart and dig a bit deeper.

Anatomy of a JWT 35

The header

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImY1ODg5MGQxOSJ9

is the header of this JWT. The header contains metadata about a
token, including the key identifier, what algorithm was used to
sign in and other information.

If you run the above header through a base64 decoder:

1 echo 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImY1ODg\

2 5MGQxOSJ9'|base64 -d

You will see this JSON:

1 {"alg":"HS256","typ":"JWT","kid":"f58890d19"}%

HS256 indicates that the JWT was signed with a symmetric algo-
rithm, specifically HMAC using SHA-256.

The list of algorithms and implementation support level is below.

“alg” Param
Value

Digital
Signature or
MAC
Algorithm

Implementation
Requirements

HS256 HMAC using
SHA-256

Required

HS384 HMAC using
SHA-384

Optional

HS512 HMAC using
SHA-512

Optional

RS256 RSASSA-
PKCS1-v1_5
using SHA-256

Recommended

RS384 RSASSA-
PKCS1-v1_5
using SHA-384

Optional

Anatomy of a JWT 36

“alg” Param
Value

Digital
Signature or
MAC
Algorithm

Implementation
Requirements

RS512 RSASSA-
PKCS1-v1_5
using SHA-512

Optional

ES256 ECDSA using
P-256 and
SHA-256

Recommended+

ES384 ECDSA using
P-384 and
SHA-384

Optional

ES512 ECDSA using
P-521 and
SHA-512

Optional

PS256 RSASSA-PSS
using SHA-256
and MGF1 with
SHA-256

Optional

PS384 RSASSA-PSS
using SHA-384
and MGF1 with
SHA-384

Optional

PS512 RSASSA-PSS
using SHA-512
and MGF1 with
SHA-512

Optional

none No digital
signature or
MAC performed

Optional

This table is drawn from RFC 7518. As only HS256 is required to
be compliant with the spec, consult the software or library used to
create JWTs for details on supported algorithms.

Other metadata is also stored in this part of the token. The typ

header indicates the type of the JWT. In this case, the value is JWT,
but other values are valid. For instance, if the JWT conforms to RFC
9068, it may have the value at+JWT indicating it is an access token.

Anatomy of a JWT 37

The kid value indicates what key was used to sign the JWT. For
a symmetric key the kid could be used to look up a value in a
secrets vault. For an asymmetric signing algorithm, this value lets
the consumer of a JWT look up the correct public key corresponding
to the private key which signed this JWT. Processing this value
correctly is critical to signature verification and the integrity of the
JWT payload.

Typically, you’ll offload most of the processing of header values to
a library. There are plenty of good open source JWT processing
libraries. You should understand the values, but probably won’t
have to implement the actual processing.

The body

The payload, or body, is where things get interesting. This section
contains the data that this JWTwas created to transport. If the JWT,
for instance, represents a user authorized to access certain data or
functionality, the payload contains user data such as roles or other
authorization info.

Here’s the payload from the example JWT:

1 eyJhdWQiOiI4NWEwMzg2Ny1kY2NmLTQ4ODItYWRkZS0xYTc5YWVlYzUwZ\

2 GYiLCJleHAiOjE2NDQ4ODQxODUsImlhdCI6MTY0NDg4MDU4NSwiaXNzIj\

3 oiYWNtZS5jb20iLCJzdWIiOiIwMDAwMDAwMC0wMDAwLTAwMDAtMDAwMC0\

4 wMDAwMDAwMDAwMDEiLCJqdGkiOiIzZGQ2NDM0ZC03OWE5LTRkMTUtOThi\

5 NS03YjUxZGJiMmNkMzEiLCJhdXRoZW50aWNhdGlvblR5cGUiOiJQQVNTV\

6 09SRCIsImVtYWlsIjoiYWRtaW5AZnVzaW9uYXV0aC5pbyIsImVtYWlsX3\

7 ZlcmlmaWVkIjp0cnVlLCJhcHBsaWNhdGlvbklkIjoiODVhMDM4NjctZGN\

8 jZi00ODgyLWFkZGUtMWE3OWFlZWM1MGRmIiwicm9sZXMiOlsiY2VvIl19

If you run the sample payload through a base64 decoder:

Anatomy of a JWT 38

1 echo 'eyJhdWQiOiI4NWEwMzg2Ny1kY2NmLTQ4ODItYWRkZS0xYTc5YWV\

2 lYzUwZGYiLCJleHAiOjE2NDQ4ODQxODUsImlhdCI6MTY0NDg4MDU4NSwi\

3 aXNzIjoiYWNtZS5jb20iLCJzdWIiOiIwMDAwMDAwMC0wMDAwLTAwMDAtM\

4 DAwMC0wMDAwMDAwMDAwMDEiLCJqdGkiOiIzZGQ2NDM0ZC03OWE5LTRkMT\

5 UtOThiNS03YjUxZGJiMmNkMzEiLCJhdXRoZW50aWNhdGlvblR5cGUiOiJ\

6 QQVNTV09SRCIsImVtYWlsIjoiYWRtaW5AZnVzaW9uYXV0aC5pbyIsImVt\

7 YWlsX3ZlcmlmaWVkIjp0cnVlLCJhcHBsaWNhdGlvbklkIjoiODVhMDM4N\

8 jctZGNjZi00ODgyLWFkZGUtMWE3OWFlZWM1MGRmIiwicm9sZXMiOlsiY2\

9 VvIl19' |base64 -d

You’ll see this JSON:

1 {

2 "aud": "85a03867-dccf-4882-adde-1a79aeec50df",

3 "exp": 1644884185,

4 "iat": 1644880585,

5 "iss": "acme.com",

6 "sub": "00000000-0000-0000-0000-000000000001",

7 "jti": "3dd6434d-79a9-4d15-98b5-7b51dbb2cd31",

8 "authenticationType": "PASSWORD",

9 "email": "admin@fusionauth.io",

10 "email_verified": true,

11 "applicationId": "85a03867-dccf-4882-adde-1a79aeec50df",

12 "roles": [

13 "ceo"

14]

15 }

Note that the algorithm to create signed JWTs can remove base64
padding, so there may be missing = signs at the end of the JWT. You
may need to add that back in order to decode a JWT. This depends
on the length of the content. You can learn more about it here²².

As mentioned above, the payload is what your application cares

²²https://datatracker.ietf.org/doc/html/rfc7515#appendix-C

https://datatracker.ietf.org/doc/html/rfc7515#appendix-C
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C

Anatomy of a JWT 39

about, so let’s take a look at this JSON more closely. Each of the
keys of the object are called “claims”.

Some claims are well known with meanings dictated by standards
bodies such as the IETF. You can view examples of such claims
here²³. These include the iss and aud claims from the example
token. Both of these have defined meanings when present in the
payload of a JWT.

There are other non-standard claims, such as authenticationType.
These claims may represent business domain or custom data. For
example, authenticationType is a proprietary claim used by Fusio-
nAuth to indicate the method of authentication, such as password,
refresh token or via a passwordless link.

You may add any claims you want to a JWT, including data useful
to downstream consumers of the JWT. As you can see from the
roles claim, claims don’t have to be simple JSON primitives. They
can be any data structure which can be represented in JSON.

Claims to verify

When code is presented with a JWT, it should verify certain claims.
At a minimum, these claims should be checked out:

• iss identifies the issuer of the JWT. It doesn’t matter exactly
what this string is (UUID, domain name, URL or something
else) as long as the issuer and consumer of the JWT agree
on valid values, and that the consumer validates the claim
matches a known good value.

• aud identifies the audience of the token, that is, who should
be consuming it. audmay be a scalar or an array value. Again,
the issuer and the consumer of the JWT should agree on the
specific values considered acceptable.

²³https://www.iana.org/assignments/jwt/jwt.xhtml

https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml

Anatomy of a JWT 40

• nbf and exp. These claims determine the timeframe for which
the token is valid. The nbf claim can be useful if you are
issuing a token for future use. The exp claim, a time beyond
which the JWT is no longer valid, should always be set. Unlike
other claims, these have a defined value format: seconds since
the unix epoch.

In addition to these, verify business domain specific claims. For
instance, someone consuming the above JWT could deny access
when authenticationType is an unknown value.

Avoid putting unused claims into a JWT. While there is no limit
to the size of a JWT, in general the larger they are, the more
CPU is required to sign and verify them and the more time it
takes to transport them. Benchmark expected JWTs to have an
understanding of the performance characteristics.

Claims and security

The claims of a signed JWT are visible to anyone who possesses the
token.

As you saw above, all you need to view the claims in plaintext is
a base64 decoder, which is available at every command line and
everywhere in the internet.

Therefore, you shouldn’t put anything that should remain secret
into a JWT. This includes:

• private information such as government Ids
• secrets like passwords
• anything that would leak information like an integer id

Another security concern is related to the verification of the aud

claim. Since consuming code already possesses the token, isn’t
verifying the aud claim extra work? The aud claim indicates who

Anatomy of a JWT 41

should receive this JWT, but the code already has it. Nope, always
verify this claim.

Why?

Imagine a scenario where you have two different APIs. One is to
create and manage todos and the other is a billing API, used to
transfer money. Both APIs expect some users with a role of admin.
However, that role means vastly different things in terms of what
actions can be taken.

If both the todo and billing APIs don’t verify that any given JWT
was created for them, an attacker could take a JWT from the todo
API with the admin role and present it to the billing API.

This would be at best a bug and at worst an escalation of privilege
with negative ramifications for bank accounts.

Signature

The signature of a JWT is critical, because it guarantees the integrity
of the payload and the header. Verifying the signature must be the
first step that any consumer of a JWT performs. If the signature
doesn’t match, no further processing should take place.

While you can read the relevant portion of the specification²⁴ to
learn how the signature is generated, the high level overview is:

• the header is turned into a base64 URL encoded string
• the payload is turned into a base64 URL encoded string
• they are concatenated with a .

• the resulting string is run through the cryptographic algo-
rithm selected, along with the corresponding key

• the signature is base64 URL encoded

²⁴https://datatracker.ietf.org/doc/html/rfc7515#page-15

https://datatracker.ietf.org/doc/html/rfc7515#page-15
https://datatracker.ietf.org/doc/html/rfc7515#page-15

Anatomy of a JWT 42

• the encoded signature is appended to the string with a . as a
separator

When the JWT is received, the same operations can be performed.
If the generated signature is correct, the contents of the JWT are
unchanged from when it was created.

Limits

In the specifications, there are no hard limits on length of JWTs. In
practical terms, think about:

• Where are you going to store the JWT
• What is the performance penalty of large JWTs

Storage

JWTs can be sent in HTTP headers, stored in cookies, and placed
in form parameters. In these scenarios, the storage dictates the
maximum JWT length.

For example, the typical storage limit for cookies in a browser
is typically 4096 bytes, including the name. The limit on HTTP
headers varies widely based on software components, but 8192
bytes seems to be a common value.

Consult the relevant specifications or other resources for limits
in your particular use case, but rest assured that JWTs have no
intrinsic size limits.

Performance penalty

Since JWTs can contain many different kinds of user information,
developers may be tempted to put too much in them. This can

Anatomy of a JWT 43

degrade performance, both in the signing and verification steps as
well as in transport.

For an example of the former, here are the results of a benchmark
from signing and verifying two different JWTs. Each operation was
done 50,000 times.

This first JWT had a body approximately 180 characters in length;
the total encoded token length was between 300 and 600, depending
on the signing algorithm used.

1 hmac sign

2 1.632396 0.011794 1.644190 (1.656177)

3 hmac verify

4 2.452983 0.015723 2.468706 (2.487930)

5 rsa sign

6 28.409793 0.117695 28.527488 (28.697615)

7 rsa verify

8 3.086154 0.011869 3.098023 (3.109780)

9 ecc sign

10 4.248960 0.017153 4.266113 (4.285231)

11 ecc verify

12 7.057758 0.027116 7.084874 (7.113594)

The next JWT payload was of approximately 1800 characters, so ten
times the size of the previous token. This had a total token length
of 2400 to 2700 characters.

Anatomy of a JWT 44

1 hmac sign

2 3.356960 0.018175 3.375135 (3.389963)

3 hmac verify

4 4.283810 0.018320 4.302130 (4.321095)

5 rsa sign

6 32.703723 0.172346 32.876069 (33.072665)

7 rsa verify

8 5.300321 0.027455 5.327776 (5.358079)

9 ecc sign

10 6.557596 0.032239 6.589835 (6.624320)

11 ecc verify

12 9.184033 0.035617 9.219650 (9.259225)

You can see that the total time increased for the longer JWT, but
typically not linearly. The increase in time taken ranges from about
20% for RSA signing to approximately 100% for HMAC signing.

Be mindful of additional time taken to transport longer JWT; this
can be tested and optimized in the same way you would with any
other API or HTML content.

Conclusion

Signed JWTs have a header, body, and signature.

Understanding all three of these components are critical to the
correct use of JWTs.

Conclusion
This book has covered a fair bit of ground on the topic of JSON
Web Tokens (JWTs). I hope you enjoyed learning more about this
powerful token format and have a better understanding of this
technical topic. At the end of the day, JWTs are another tool, and
the goal is not to use them everywhere, but to feel more comfortable
about when JWTs make sense and when they do not.

You also learned about revocation solutions and the implementa-
tion tradeoffs available for this vital function.

As a widely supported, understandable, flexible way to transport
information that can be cryptographically verified, JWTs deserve a
place in your developer toolbelt. I hope this book helped you decide
that they’ve earned it.

	Table of Contents
	What are JWTs
	Building a Secure Signed JWT
	Definitions
	Out of scope
	Security considerations
	Creating tokens
	Holding tokens
	Consuming a JWT
	In conclusion

	Pros and Cons of JWTs
	JWTs expire at specific intervals
	JWTs are signed
	JWTs aren't easily revocable
	JWTs have exploits
	Sessions as an alternative

	Revoking JWTs & JWT Expiration
	Reduce the duration of the JWT
	Rotate keys
	Build a deny list
	Conclusion

	Anatomy of a JWT
	The header
	The body
	Signature
	Limits
	Conclusion

	Conclusion

